Effects of Physiological Fluctuations on Estimation of Vascular Flow in Eyes with Idiopathic Macular Wrinkle

0
  • Pournaras CJ, Emarah A, Petropoulos IK. Idiopathic macular epiretinal membrane surgery and ILM peeling: anatomical and functional results. Semin Ophthalmol. 2011;26:42–6. https://doi.org/10.3109/08820538.2010.544237.

    Article
    PubMed

    Google Scholar

  • Rahman R, Stephenson J. Early epiretinal membrane surgery preserves more vision for patients. Eye. 2014;28:410–4. https://doi.org/10.1038/eye.2013.305.

    CASE
    Article
    PubMed
    PubMed Center

    Google Scholar

  • Yoon YS, Woo JM, Woo JE, Min JK. The surface of the superficial foveal avascular zone changes before and after idiopathic epiretinal membrane surgery. Int J Ophthalmol. 2018;11:1711–5. https://doi.org/10.18240/ijo.2018.10.21.

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Kitagawa Y, Shimada H, Shinojima A, Nakasashizuka H. Foveal avascular zone analysis using optical coherence tomography angiography before and after idiopathic epiretinal membrane surgery. Retina. 2019;39:339–46. https://doi.org/10.1097/IAE.0000000000001972.

    Article
    PubMed

    Google Scholar

  • Kumagai K, Furukawa M, Suetsugu T, Ogino N. Foveal avascular area after internal limiting membrane peeling for epiretinal membrane and macular hole compared with that of other eyes and healthy controls. Retina. 2018;38:1786–94. https://doi.org/10.1097/IAE.0000000000001778.

    Article
    PubMed

    Google Scholar

  • Okawa Y, Maruko I, Kawai M, Hasegawa T, Arakawa H, Lida T. Foveal structure and vasculature in eyes with idiopathic epiretinal membrane. PLOS ONE. 2019;14:1–8. https://doi.org/10.1371/journal.pone.0214881.

    CASE
    Article

    Google Scholar

  • Romano MR, Cennamo G, Schiemer S, Rossi C, Sparnelli F, Cennamo G. Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes. Graefes Arch Clin Ophthalmol. 2017;255:681–9. https://doi.org/10.1007/s00417-016-3534-4.

    Article

    Google Scholar

  • Kim YJ, Kim S, Lee JY, Kim JG, Yoon YH. Macular capillary plexus after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;102:1086–91. https://doi.org/10.1136/bjophthalmol-2017-311188.

    Article
    PubMed

    Google Scholar

  • Kumagai K, Ogino N, Furukawa M, Ooya R, Horie E. Early centripetal displacements of capillaries in the macular region caused by internal limiting membrane peeling. Clin Ophthalmol. 2018;12:755–63. https://doi.org/10.2147/OPTH.S158826.

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Chen H, Chi W, Cai X, Deng Y, Jiang X, Wei Y, et al. Characteristics of macular microvasculature before and after vitrectomy in idiopathic macular epiretinal membrane: an OCT angiography analysis. Eye. 2019;33:619–28. https://doi.org/10.1038/s41433-018-0272-3.

    CASE
    Article
    PubMed

    Google Scholar

  • Mastropasqua L, Borrelli E, Carpineto P, Toto L, Di Antoio L, Mattei PA, et al. Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol. 2018;38:1465–72. https://doi.org/10.1007/s10792-017-0608-1.

    Article
    PubMed

    Google Scholar

  • Casini G, Lazzeri S. Analysis of choroidal thickness change after 25-gauge vitrectomy for idiopathic epiretinal membrane with or without phacoemulsification and intraocular lens implantation. Ophthalmological. 2017;237:78–84. https://doi.org/10.1159/000452769.

  • Ahn SJ, Woo SJ, Park KH. Choroidal thickness change after vitrectomy in idiopathic epiretinal membrane and macular hole. Graefes Arch Clin Exp Ophthalmol. 2016;254:1059–67. https://doi.org/10.1007/s00417-015-3154-4.

    Article
    PubMed

    Google Scholar

  • Yu Y, Teng Y, Gao M, Liu X, Chen J, Liu W. Quantitative choriocapillary perfusion before and after vitrectomy in idiopathic epiretinal membrane by optical coherence tomography angiography. Ophthalmic surgery, Retin laser imaging. 2017;48:906–15. https://doi.org/10.3928/23258160-20171030-06.

    Article

    Google Scholar

  • Michalewska Z, Michalewski J, Ornafel-Sagan K, Navrocki J. Swept-source optical coherence tomography correlations between retina and choroid before and after vitrectomy for epiretinal membranes. Am J Ophthalmol. 2016;165:100–7. https://doi.org/10.1016/j.ajo.2016.02.003.

    Article
    PubMed

    Google Scholar

  • Michalewska Z, Michalewski J, Adelman R, Zawislak E, Navrocki J. Choroidal thickness measured by swept-source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes. Retina. 2015;35:487–91.

    Article

    Google Scholar

  • Gass JDM. Macular dysfunction caused by contraction of the epiretinal membrane. In: Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. 4th ed., vol. 2. St. Louis, MO: Mosbyy; 1997. p. 938–50.

  • Govetto A, Lalane RA III, Sarraf D, Figueroa MS, Hubschman JP. Overview of epiretinal membranes: presence of ectopic inner foveal layers and new optical coherence tomography staging pattern. Am J Ophthalmol. 2017;175:99–113. https://doi.org/10.1016/j.ajo.2016.12.006.

    Article
    PubMed

    Google Scholar

  • Reif R, Qin J, An L, Zhi Z, Dziennis S, Wang R. Quantification of optical microangiography images obtained from a spectral domain optical coherence tomography system. Imaging Int J Biomed. 2012;2012:509783. https://doi.org/10.1155/2012/509783.

  • Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantification of microvascular density and morphology in diabetic retinopathy using spectral domain optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2016;57:OCT362.70. https://doi.org/10.1167/iovs.15-18904.

  • Phansalkar N, More S, Sabale A, Joshi M. Adaptive local threshold for the detection of nuclei in diversity-stained cytology images. 2011 International Conference on Communications and Signal Processing, 2011, p. 218–220. https://doi.org/10.1109/ICCSP.2011.5739305.

  • Spaide RF. Characteristics of choriocapillary flow follow a power-law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67. https://doi.org/10.1016/j.ajo.2016.07.023.

    Article
    PubMed

    Google Scholar

  • Zouache MA, Eames I, Klettner CA, Luthert PJ. Form, form and function: segmented blood flow in the choriocapillaris. Sci Rep. 2016;6:35754. https://doi.org/10.1038/srep35754.

    CASE
    Article
    PubMed
    PubMed Center

    Google Scholar

  • Aleksic M, Matoussevitch V, Heckenkamp J, Brunkwall J. Changes in internal carotid blood flow after CEA assessed by a transit-time flowmeter. Endoscopic surgery Eur J. 2006;31:14–7. https://doi.org/10.1016/j.ejvs.05.08.029.

    CASE
    Article

    Google Scholar

  • Eckstein HH, Eichbaum M, KlemmK, Doerfler A, Ringleb P, Bruckner T, et al. Improvement of carotid blood flow after carotid endarterectomy – evaluation by intraoperative ultrasound flow measurement. Eur J Vasc Endovasc Surg. 2003;25:168–74. https://doi.org/10.1053/ejvs.2002.1820.

    Article
    PubMed

    Google Scholar

  • Share.

    Comments are closed.